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FOREWORD

This report represents the results of work performed by

the Lockheed-Huntsville Research & Engineering Center for the

NASA-Marshall Space Flight Center, Alabama, under Exhibit A

of Contract NAS8-25986.

The NASA contract monitor for this study was Mr. R. L.

Middleton of the MSFC Astronautics Laboratory.
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SUMMARY

Lockheed-Huntsville's contractual efforts during the last 15 months are

documented in this report. These analytical efforts are in support of a full-

scale demonstration system which is currently under construction at the National

Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville,

Alabama. The previous contract report was Ref. 1, published in November 1972.

The basic solar heating and cooling system utilizes a flat plate solar

energy collector, a large water tank for thermal energy storage, heat exchangers

for space heating and water heating, and an absorption cycle air conditioner for

space cooling. A complete description of the system is presented in Section 2.

Using previously developed computer tools, a wide range of solar energy

collector studies have been conducted. The effects of collector design and

operating conditions upon collector performance have been explored extensively,

as described in Section 3.

Thermal analyses of the energy storage system have been conducted, as

reported in Section 4.

Numerous parametric studies of the total system performance have been

conducted using a sophisticated system simulation computer program. This

program uses measured meteorological data and mathematical models of all

system components to perform a transient energy transfer analysis through an

entire year. Section 5 contains details and results of such simulations.

Pressure distribution studies also have been completed, as discussed

in Section 6.

Cited references are listed in Section 12. Additional sources of information
not directly cited in this report are listed in Section 13, Bibliography.
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A novel approach to economic comparisons between solar and conventional

heating and cooling is described in Section 7. The current state of the art in

solar air conditioning is reviewed in Section 8. A variety of small studies

and their results are presented in Section 9.

Section 10 presents the conclusions which have been reached based upon

studies to date. Among these, the most important are the following:

* Solar-powered heating and cooling systems are technically
feasible and will be economically competitive with conven-
tional systems.

* There are a tremendous number of benefits offered by the
exploitation of solar energy to heat and cooling buildings, in-
cluding fuel shortage alleviation, pollution reduction, natural
resource preservation, environmental protection, and national
energy independence.

Finally, recommended future activities to expedite the widespread utiliza-

tion of solar energy for heating and cooling are delineated in Section 11.
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Section 1

INTRODUCTION

The current worldwide shortage of petroleum dramatically emphasizes

the need for alternative energy sources. Among the possible alternative

energy sources, the most pollution-free, non-depletable, boundless source

of all is solar energy. One may reasonably expect that the sun will ulti-

mately be harnessed to produce electricity, synthetic liquid and gaseous

fuels, and high temperature thermal energy for industrial processes. How-

ever, the first major application of solar energy will be to heat and cool

buildings since this application will require the fewest technological advances

and the least expenditures of time and money. During 1972, Lockheed-

Huntsville conducted a study of the technical and economic feasibility of a

residential heating and cooling system to be located in Huntsville, Alabama.

This study was funded by NASA-MSFC and was fully documented in Ref. 1.

During 1973 and 1974, Lockheed-Huntsville has been providing design analyses

in support of the NASA solar heating and cooling demonstration system, cur-

rently being fabricated at MSFC.

The objectives of the work documented in this report include the following:

* To determine a solar energy collector design which would be

efficient for both energy transfer and fluid flow, based upon
extensive parametric analyses

* To generate the thermal design requirements for the energy
storage system, which utilizes sensible heat storage in water

* To properly size system components (including the collector
and storage) and to determine a practical, efficient total
system configuration, by means of computer simulation of

system performance.

This report contains the results of all contractual efforts conducted from

January 1973 through March 1974.
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Section 2

DESCRIPTION OF THE SOLAR-POWERED RESIDENTIAL
HEATING AND COOLING SYSTEM

The solar-powered residential space heating, air conditioning and hot

water heating system considered in this study is shown schematically in

Fig. 1. The major components of the system are the flat-plate solar energy

collector, the large hot water tank for energy storage, an auxiliary furnace

to provide needed thermal energy when storage is depleted, and the output

units: air heater, water heater, and absorption cycle air conditioner.

The system operation is simple. Water from the storage tank is pumped

through the collector where it is heated by absorbed solar radiation. The

heated water in the storage tank is used as the primary energy source for

water heating, space heating, and air conditioning. For water heating, cold

city water is passed through the heat exchanger shown submerged in the storage

tank. In general, this will heat the city water to a temperature level sufficient

for domestic hot water. When storage is depleted, though, the city water will

be passed through the auxiliary furnace to boost its temperature to the required

level. For space heating, water from the storage tank is passed through the

air heater, which is a simple water-to-air heat exchanger located in the inlet

air duct of the residence. For cooling, water from the storage tank is passed

through the absorption cycle air conditioner, which uses this input heat to

power the conventional lithium bromide/water absorption refrigeration cycle

for cooling and dehumidifying the house air. The cooling coil (evaporator)

of the absorption refrigeration cycle machine is also located in the inlet air

duct of the residence. Whenever space heating or cooling is needed but the

stored water temperature is below the level required by the output heater or

absorption air conditioner, the auxiliary furnace will be used to provide the

required thermal energy. Whenever auxiliary heat is being used for space

heating or cooling, the water flow will go through the bypass shown in Fig. 1,

2



Domestic

ColdCollector Hot Water

Fuel

" IAuxiliary
Furnace

Absorption

Cycle
Air

Conditioner

Pump

Bypass
Air Heater i

Fig. 1 - Schematic of the Solar-Powered Heating and Cooling System
,O)



LMSC-HREC TR D390138

rather than returning to the large storage tank. This is to prevent the use of

auxiliary heat to raise the temperature of the stored water, which would lower

collector efficiency.

Figure 2 presents an artist's concept of the visual appearance of a home

with an installed solar collector on its south-facing roof. The flat-plate col-

lector can be integrated with the structure in an aesthetically pleasing manner.

Figure 3 is a schematic of the flat-plate solar collector which will be used in

the NASA-MSFC demonstration system. Further details of the collector design

are discussed in Section 3. Figure 4 presents a drawing of the energy storage

tank, which can be located in the basement of the house or below the ground.

The following sections of this report contain the results of studies of

the major components of the solar-powered system, and of the total system

as a whole.
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Fig. - Artist's Concept of Conventional Home with Solar Heating and Cooling

Fig. 2 Artist's Concept of Conventional Home with Solar Heating and Cooling
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Section 3

SOLAR ENERGY COLLECTOR STUDIES

During the past 15 months, numerous studies of flat-plate solar collectors

were conducted under this contract. These studies and results are discussed

in the following subsections.

3.1 COLLECTOR ABSORBER PLATE

Several large metal companies were contacted regarding the absorber

plate of the flat-plate solar energy collector to determine the commercial

availability of integral tube-in-sheet material. The major result of this survey

was the identification of Olin Brass Roll-Bond material. This material is in

the form of flat sheets with integral flow passages and appears ideal for solar

collector applications. The material is available in aluminum alloys and copper

alloys, and virtually any flow passage/manifold design can be fabricated with

the silk screen/hot roll process used in manufacturing the Roll-Bond panels.

Material cost is the major cost element, such that a cost of about 60 to 70 cents

per square foot can be achieved for 0.060-inch thick aluminum Roll-Bond panels.

Thinner sheets could be manufactured for less, although current tooling is set

up for a minimum thickness of about 0.040 to 0.045 inch, depending on material.

Connectors can be attached during sheet manufacture, and sheets up to 36 by

110 inches are currently available. MSFC is currently using the aluminum

Roll-Bond material.

Unfortunately, NASA-MSFC plating facilities would allow application of

the MSFC shiny nickel/nickel black selective coating only on panels of small

size. Therefore, a 2-foot wide by 3-foot long nominal panel size was adopted

as a design constraint for the MSFC demonstration system. However, larger

panels would be used in downstream, mass-production applications.

8
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3.2 FLOW PASSAGE GEOMETRY DEFINITION

After selecting the Roll-Bond material and setting the 2 x 3 foot size

limitation on the panels, the flow passage geometry had to be defined. There

are three basic considerations involved in designing the flow passages and

manifolding for the panels:

* Uniform flow distribution throughout the panel is required
for good thermal and fluid flow performance.

* A small overall pressure drop through the panel is required
to minimize pump power for fluid circulation.

* Passage spacing and sizing must be selected for high fin
efficiency and high film coefficient to achieve good thermal
performance.

Parametric fluid flow analyses and thermal analyses were conducted to

define a design that would have favorable characteristics with respect to each

of the three considerations cited above. For design purposes, a flow rate of

0.80 gpm was assumed to flow through the panel; this was calculated based

upon stacking seven small panels in series to yield about 42 ft 2 of collector.

Under excellent operating conditions, 0.80 gpm flowing through 42 ft2 of col-

lector would allow about a 200F rise in water temperature from inlet to outlet.

This was taken to be a reasonable value for the maximum temperature rise.

The results of the parametric analyses indicated that the design shown

in Fig. 5 would be excellent from fluid distribution, pressure drop, and heat

transfer viewpoints. This design utilizes 16 identical flow passages arranged

in parallel. The passages are 0.375-inch wide as shown in the detail of Fig. 5 ,

and are spaced on 1.500-inch centers. The manifold is a simple triangular

passage designed to feed each of the 16 passages with an equal flow of water.

Although not shown in the figure, the manifold flow passage is twice the height

of the 16 separate flow passages, i.e., the manifold outside height is 0.250-inch

rather than the 0.125 inch used for the individual flow passages. This extra

flow area minimizes pressure variations in the manifold.

9
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The predicted thermal performance of the panel for typical operating

conditions is shown in Fig. 6 . As shown in the figure, the temperature dif-

ference between plate and water is less than 1.50F from inlet to outlet; this

small temperature differential signifies excellent conductive and convective

heat transfer. Also shown in Fig. 6 , the AP through the panel for the given

conditions is only 0.04 psi, a totally acceptable value. Regarding flow uniformity,

NASA-MSFC fabricated a test panel of plexiglass using this design and conducted

a flow visualization test, using dye in water. The results verified a uniformly

distributed flow through all the passages.

One slight design modification was required prior to fabricating all of the

panels for the MSFC collector. Since only a soft aluminum alloy was available

as the material for the panels, some spot weld points were included in the

manifolds to reduce the unsupported spans in the manifold. These were re-

quired to maintain structural integrity under the slightly pressurized condi-

tions under which the collector will operate.

3.3 BACKSIDE INSULATION

The backside of the collector must be insulated to minimize downward

heat losses. A transient thermal analysis of this backside insulation was con-

ducted to determine its heat transfer characteristics. Six inches of fiberglass

were assumed to be subject to a 2000F step jump in Roll-Bond plate temperature.

The resultant heat transfer into the insulation is presented in Fig. 7, for the

given insulation properties. As shown in the figure, the steady-state heat flux

of about 8 Btu/ft2-hr is reached in a few hours. This value was considered

acceptable and six inches of fiberglass insulation were incorporated into the

collector design. However, the fact that the heat loss from the plate is more

than twice the steady-state value for about one hour should be remembered,

especially in collector testing where data points are often obtained in quick

succession at progressively higher temperatures.

11
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3.4 NO-FLOW TEMPERATURE EXTREMES

'1o determine the maximum tenlperature levels which the collector com-

ponents could experience, an analysis was conducted for the collector operating

under the best possible set of circumstances. The results are presented in

Figs. 8 and 9 for single-glazed and double-glazed collectors, respectively.

For the one-Tedlar cover collector, the maximum plate temperature which

could be reached under no-flow circumstances would be 485 0 F, corresponding

to zero efficiency as shown in Fig. 8 . The Tedlar cover would reach about

220 0 F. For the two-Tedlar cover collector, the maximum plate temperature

achievable would be about 5800F, with the inner Tedlar approaching 3000F.

Clearly, such temperatures must be avoided in case of flow failure coupled

with excellent collection conditions. The recommended method of preventing

such overheating is to flow cold city water through the collector in the event of

plate temperature rise above a safe level, e.g., 3000F.

3.5 RADIATION PROPERTIES OF SELECTIVE COATING

Parametric studies were conducted to determine the effect of selective

coating properties on collector performance under typical operating conditions.

Figures 10 through 13 present the results of these studies for typical clear

summer and winter days for both single-glazed and double-glazed collector

designs. The operating conditions are specified on the figures, and the solar

absorptance and infrared emittance are parameterized. The great benefits

of high solar absorptance and low infrared emittance are clearly demonstrated

in these figures.

Figures 14 and 15 present comparisons of performance for the single-

and double-glazed collectors. The large benefits offered by the double-glazing

are apparent in these figures, especially for higher emittance values and lower

solar absorptance values.

14
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3.6 WIRE/TEDLAR COMPOSITE

The MSFC collector design will utilize Tedlar bonded to a rectangular

wire mesh for strength and rigidity. The wire mesh is a 2 by 4-inch welded

steel mesh fencing material.

The wire mesh has one significant effect on the collector performance.

It blocks about 7% of the solar radiation incident upon the Tedlar, resulting

in an effective perpendicular transmittance of 0.85 rather than the 0.92 quoted

for plain Tedlar.

During preliminary testing, the wire in the Tedlar/wire composite trans-

parent cover was observed to reach a much warmer temperature than the Tedlar.

To explain this effect and determine its magnitude and its dependence on wire

surface properties, a thermal analysis was conducted. The results are shown

in Fig. 16. Note that the higher the emittance and the lower the absorptance,

the cooler the wire. However, the temperature rise of the wire above the

Tedlar temperature will have no noticeable effect on collector efficiency, and

the flexible nature of the adhesive between the wire and Tedlar should prevent

any thermal stress problems.

3.7 COMPARISON OF EXPERIMENTAL COLLECTOR PERFORMANCE
WITH ANALYTICAL PREDICTIONS

During the first quarter of 1974, MSFC initiated testing of a solar col-

lector module of approximately 40 ft 2 , oriented southward with a 45-degree

tilt off horizontal. The results of three quasi-steady-state tests are presented

in Figs. 17 and 18. Also presented in the figures are the Lockheed predictions

of collector performance for the measured meteorological conditions (solid

curves). The experimental points are below the solid, prediction curves for all

three tests. To investigate these relatively small discrepancies between theory

and test, a rough thermal analysis of the edge losses was conducted. When

the calculated edge losses are included in the collector analysis, the dashed-

line efficiency curves of Figs. 17 and 18 are obtained. Clearly, the comparison

between the dashed-line curves and the test points shows excellent correlation,

within about 1% in each case.
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Fig. 16 - Wire Equilibrium Temperature
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Fig. 17 - Analytical/Experimental Comparison for Solar Collector Test
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Fig. 18 - Analytical/Experimental Comparison for 2800F Solar Collector Test
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Based upon these calculations, MSFC engineers have modified the design

of the full-scale, 1300 ft 2 collector to reduce or eliminate the edge losses.

Figures 19 and 20 present schematics of all of the energy flows about the

collector for two of the test points. These figures point out the relative

magnitudes of the different energy exchange mechanisms involved.

3.8 SOLAR FLUX AND INCIDENCE ANGLE EFFECTS

To extrapolate the findings discussed above to summer operation of the

collector, analytical studies were conducted assuming typical summer condi-

tions. Figure 21 presents the results of a study of the effect of solar flux on

collector efficiency. The three curves show the performance of three collector

designs as labeled. The effect of edge loss is seen to be greater at lower fluxes

than at higher fluxes. Also, the performance of a two-cover collector is seen

to be far superior to a one-cover collector at lower solar flux levels.

Figure 22 presents the results of a study of the effects of incidence angle

on collector performance. The incidence angle is measured between the sun's

rays and a vector normal to the collector. Again, both the performance degrada-

tion due to edge loss and the performance improvement offered by two covers

are seen to be of greatest importance at large incidence angles. Interestingly,

the daily average incidence angle during the cooling season, when defined as

Suns et

cos6 dt

0 cos- 1 I Sunrise cos dt
averag e  t -t .asunset sunrise

varies from about 550 in early summer to about 500 in early fall for the MSFC

collector with its 450 tilt.
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Fig.21 - Effect of Solar Flux on Collector Performance
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Fig. 22 - Effect of Incidence Angle on Collector Performance
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3.9 FURTHER TILT ANGLE STUDIES

Figure 23 presents an interesting comparison of the total daily insola-

tion on surfaces tilted toward the equator at different tilt angles. These

curves were calculated for Huntsville's latitude. No atmospheric effects

were treated - just the geometrical effects of the sun-earth astronomy.

Clearly, the 45-degree angle chosen for the MSFC test system is a reason-

able choice. It is biased in favor of winter operation, but not so much as

to greatly degrade summer operation. Section 5 presents results of some

total system performance studies of tilt angle effects which further sub-

stantiate the 45-degree tilt angle as being a good year-round choice for

Huntsville.
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4.000 NOTE: A perfectly transparent atmosphere is assumed for these
calculations.
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Fig. 23 - Seasonal Variation in Ideal Solar Irradiation for Various
Tilt Angles (measured from horizontal)
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Section 4

ENERGY STORAGE SYSTEM STUDIES

Storage system studies were concentrated in the three areas discussed

below.

4.1 TANK SELECTION

Several potential water storage tanks were available at MSFC as surplus

material. These tanks varied in size and condition. The tank in best condition

was a 4200 gallon aluminum tank. This tank would correspond to about 34,000

lbm of energy storage mass. Figures 24 through 26 can be used to determine

how this tank would work in the total system under consideration . These

figures show the effect of varying maximum temperature (which sets the maxi-

mum tank pressure), collector area, and storage tank capacity with regard to

auxiliary energy requirements. NASA-MSFC is currently planning to use a

collector area of more than 1200 ft 2 . Accordingly, the figures show that the

34,000 lbm tank will result in a reasonably small auxiliary energy requirement

for any reasonable maximum temperature. Therefore, this tank was selected

as fully adequate for the demonstration program.

4.2 TANK INSULATION SELECTION

Several materials were considered as insulation candidates, but selection

was quickly narrowed to a loose fill Fiberglas insulation. The primary criterion

The data presented in these figures were generated early in the study and do
not include the effects of building thermal inertia, a finite allowable tempera-
ture band within the building, and other beneficial features included in the
later total system performance analyses discussed in Section 5. Also, NASA-
MSFC decided after choosing the tank to utilize a single-glazed collector
rather than the double-glazed collector used to generate these figures. There-
fore, please refer to Section 5 for more accurate total system performance
predictions.
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used in selecting Fiberglas was cost. A properties table (Table 1) was

comnpiled for the selected material. As the table shows, this material is

reasonably cheap. It takes about $450 to fill the box illustrated in Fig.27,

even at a density of 3 lb/ft3 . No conductivity data could be obtained at a mean

temperature of 1500F, but it should be around 0.025 Btu/hr-ft-oF, based upon

extrapolation from reported values.

4.3 THERMAL ANALYSIS OF TANK

Thermal analyses were performed on the water storage tank to be used

in the solar home prototype heating and cooling system. These studies were

used to determine the heat loss from the storage tank as a function of insulation

thickness (as shown in Fig. 2 7 ). The heat loss as a function of insulation thick-

ness is shown in Fig.28. Figure 29 is the heat loss through the support struc-

tures and the water supply lines. This heat loss is independent of the insulation

thickness.

38



LMSC-HREC TR D390138

Table 1

TANK INSULATION

Type: Loose Fill Fiberglas

Manufacturer: Johns-Manville and Others

Maximum Service Temperature: > 3000F

Conductivity: At 750F p .8 lb/ft3  K ; .030 Btu/hr-ft- F

P 3 lb/ft3  K - .018 Btu/hr-ft-OF

Cost: = $.14/lb

Box Minimum
Wall Clearance Cost

1 ft $450.

2 700.

3 1000.

Recommended: p - 3 lb/ft 3

K (estimated) , 0.025 Btu/hr-ft- 0 F

At p = 3 lb/ft 3

39



LMSC-HREC TR D390138

Weld Line

7ft

2ft

a. Tank Dimensions

Insulation

Insulation

Thickness

Thickne s s

Plywood Box f Plywood Box

b. Side View Thickness c. Front View

Fig.27 - Energy Storage Tank
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Section 5

PARAMETRIC TOTAL SYSTEM PERFORMANCE STUDIES

To evaluate the effect of different design options upon the performance of

the total solar-powered system, a computer program has been developed and

refined over the last two and one-half years to simulate the transient behavior

of the system over an entire year. A brief description of modeling techniques

and results of simulations are presented in the following paragraphs.

5.1 MODELING TECHNIQUES

Figure 30 shows the basic components which make up the simulation

program. The six subsystems which comprise the total system are each

separately modeled. Environmental data in the form of time-varying ambient

temperature, wind speed, and direct and diffuse solar fluxes are required in-

puts. These environmental data are required for an entire year to allow

transient analysis over the entire year. When time-varying solar data are

not available, as is usually the case, techniques for calculating these data from

available whole day total insolation values have been developed. The method

which is currently used to recorrelate the whole day flux totals into time-varying

fluxes is to simply determine the average atmospheric attenuation of the solar

constant for each day, and apply this attenuation factor to the solar constant

throughout the day while conducting the system analysis. Thus the solar flux

intensity is held constant through the day, while the relative position of the sun

to the collector (the incidence angle) is calculated instantaneously throughout

the day, based upon input values of latitude and collector tilt angle.

A control system logic routine allows for choices in such parameters

as thermostat settings, energy exchanges between components, flow rates,

switches, etc.

The six subsystem models used in the computer program to simulate

the MSFC solar-powered facility are described below. These models pertain
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only to the residential solar-powered system being developed at MSFC. Other

systeims for other buildings in other regions would require different nmodels,

although the same simulaLion approach should prove valuable for analyzing

these other systems.

The six subsystem models are very simple, with the exception of the

solar collector model, which is a sophisticated mathematical model that allows

accurate determination of the transient thermal performance of the collector.

Each of the six models is discussed below.

* Building Model

The building is treated as a fixed thermal capacitance connected to the

outside environment through a variable thermal resistance. The capacitance

is assumed to be 10,000 Btu/oF. This capacitance value represents the

effective thermal inertia (mass times specific heat) of the building and its

contents, which serve-to dampen the effect of external temperature variations

on the inside air temperature. The resistance value is different for hot weather

than for cold weather. When the ambient temperature is above 70 0 F, the

resistance value is set at 0.0007 0 F-hr/Btu, which corresponds to a 3-ton

(36,000 Btu/hr) cooling load at 950F ambient temperature. When the ambient

temperature is below 70 0 F, the resistance value is set at 0.00117 0F-hr/Btu,

which corresponds to a 60,000 Btu/hr heating load at 0 0 F ambient temperature.

The reduced resistance value for cooling is used to include latent loads which

are important during the cooling season. These resistance values were based

upon MSFC load calculations, and represent the overall heat transfer path

between the inside air and the outside air.

* Energy Storage Model

The energy storage system is treated as a fixed thermal capacitance

for the MSFC simulations. The capacitance value is an input quantity which

represents the mass times specific heat product of the water in the energy

storage tank. The storage system heat losses are treated as a fixed thermal

resistance, and heat flows through this resistance to the outside environment.

A maximum temperature is also a required input.
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* Auxiliary Energy Model

The auxiliary energy system is a zero capacitance thermal energy source.

Several options are available concerning the control of the auxiliary energy

system, including whether the heat is added to storage or used directly to power

the heating, cooling, and water heating components. The output heating rate

of the auxiliary heater is 60,000 Btu/hr for heating and 55,000 Btu/hr for cooling.

* Heating Model

The space heating model is a zero capacitance input/output unit which

utilizes heat from either the collector, energy storage, or the auxiliary energy

system, depending on control logic selection and instantaneous conditions. The

efficiency of the unit is an input variable, being defined as heat output divided

by heat input. The heating rate output as a function of water temperature and

air temperature as these fluids enter the heat exchanger is also input to simu-

late the actual heat exchanger performance.

* Cooling Model

The space cooling model is a zero capacitance heat-driven air-conditioner,

with its performance defined by an input coefficient of performance (0.65). This

input/output unit may be driven with heat from either the collector, storage or

auxiliary, depending on prevailing conditions and control logic selection. The

cooling rate is considered constant at 36,000 Btu/hr.

* Solar Collector Model

The solar collector model is a flexible energy transfer model which allows

considerable variation in collector design. Input design variables include col-

lector area, tilt angle, number of transparent covers, characteristic dimensions

and spacings, and thermophysical properties of absorber plate, transparent

covers, and backside insulation. Water is assumed as the energy transport

fluid and its flow rate is an input parameter. The thermal capacitances of the

plate, covers, insulation, and water are all used in the transient numerical

treatment of the collector. Further details of the solar collector model are

presented in the Appendix. The accuracy of the collector model is well verified

by test data, as discussed in Section 3.
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(At NASA-MSFC's request, water heating for domestic usage was left

out of the MSFC simulation program, although it can be and has been included

in other Lockheed studies.)

5.2 SIMULATION RESULTS

The computer program takes the inputs and models described above and

conducts a transient energy transfer analysis through the year, obtaining all

pertinent energy flows including energy used for heating and cooling, energy

collected, auxiliary energy used, and energy wasted for lack of storage

capacity. Daily totals and cumulative totals throughout the year are determined

for all of these energy flows.

This simulation computer program has been widely used to compare dif-

ferent system designs. The major parameter of comparison has been taken as

the dimensionless ratio, Qaux/Qtot, which represents the fraction of the total

energy requirements for heating and cooling which must be met with conventional,

auxiliary energy. Obviously, the smaller this value, the better the system per-

formance.

One comparison is presented in Fig. 31. This comparison is between two

collector designs and two tank sizes, all as a function of collector area. The

benefits of using two Tedlar covers and large storage are apparent.

The effect of tilting the collector was investigated to some extent as shown

in Fig. 32. The roof was assumed to be tilted 60 degrees from the horizontal

during the winter and 30 degrees during the remainder of the year. This results

in a significant savings in collector area but adds to the initial cost due to having

a pivot mechanism. Another point made by this figure is that the fixed-tilt-angle

collector at 45 degrees with respect to the horizontal performs almost as well

as the more complicated double-tilt-angle system, again verifying this selected

tilt angle as a good choice for whole-year operation (as previously discussed

in Section 3).

The radiation properties of the selective coating and the transparent

covers are extremely important to the overall performance of the solar-powered
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system. The transmittance of the Tedlar film currently being manufactured

and its possible degradation with age have not been clearly defined. Also, the

changes in solar absorptance and infrared emittance of the selective coating with

age are currently unknown. Therefore, a sensitivity study was conducted to

determine the effect of property degradation on overall performance. The re-

sults are presented in Fig. 33 for undegraded (good) and degraded properties.

The degraded property values were set at levels which might be reached if

degradation were to occur.

Figure 34 presents the results of a study to determine the effect of the

number of transparent covers on early summer operation. The curves show

the auxiliary energy requirements for the two-month period as a function of

collector area for one and two Tedlar covers. Clearly, the performance of

the two-cover system is superior to the performance of the one-cover system.

For example, the auxiliary energy required for the one-cover system with an

area of 1500 ft2 is identical to that required for the two-cover system with an

area of 950 ft2

Figure 35 presents the results of a study to determine the effect of

maximum tank operating pressure on early summer operation. The maximum

pressure corresponds to the water vapor pressure plus 15 psi to allow for the

30-foot rise in elevation from the tank to the collector, plus another AP to

allow 200F temperature rise through the collector without boiling. The maxi-

mum temperatures corresponding to the pressures are shown below the pres-

sure axis. The curve shows the auxiliary energy required for June and July

operation. For the large tank under consideration, the improvement in per-

formance with increasing pressure reaches the point of diminishing returns

at about 45 psia. For a smaller tank, the curve would probably flatten out at

a somewhat higher pressure.

The results of a study to determine the effect of effective transmittance

of the Tedlar covers on system performance are presented in Figs. 36 and 37.

The curves show the degradation of performance with decreasing transmittance

for both good selective coating properties (solid curves) and for degradated

selective coating properties (dashed curves). Again, the superiority of the

two cover system is clearly demonstrated.
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For rapid calculations without having to run the computer program, a

differential approximation of system performance sensitivity to small changes

in radiation properties and area of the solar collector was developed. The basic

sensitivity correlation was developed as shown below.

Qauxiliary
L total June + July

Then:

do = das+ de+ d7+ - dA,

where as = solar absorptance of plate

E = infrared emittance of plate

T = effective transmittance of Tedlar

A = collector area (ft2).

Then:

= anominal + do.

The nominal values of the variables were:

as = 0.91

E = 0.06

7 = 0.84

A = 1500 ft.

The computer simulation program was used to evaluate the partial deriva-

tives at the nominal point for both one-Tedlar and two-Tedlar collector designs.

The resulting correlations are given below.

0.00031
= 0.0954 - 1.81 da + 1.92 dE - 1.74 dT - dA

1 cover s ft

0.000147
a = 0. 00392 - 0.786 da + 0.431 dE - 0.724 dT - dA.

2 cover s ft 2
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Care must be taken with the signs of the small changes in as' , 7 and A.

Positive changes indicate increases above nominal values and negative signs

indicate decreases below nominal values. Spot checks indicate that the corre-

lations are surprisingly accurate for small changes in the variables.
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Section 6

PRESSURE DISTRIBUTION STUDIES

Various pressure distribution studies were conducted to determine maxi-

mum tank pressure requirements, line sizes and pump requirements.

6.1 STORAGE TANK PRESSURE

For summer heat storage the water must, in general, be above 2100F

to be useful. This limits the sensible heat storage to the range from 2100F

to some upper limit determined by how much pressure is allowed in the system.

If the temperature in the tank is desired to be 250 0 F and the temperature rise

in the collector is 20 0 F, then the maximum temperature of the system will

be 270 0 F at the top of the collector. The minimum pressure in the system will

also be at the top of the collector, so to prevent boiling in the collector the

pressure in the fluid must be above the vapor pressure of water at 270 0 F (about

45 psia). The column of water from the top of the collector to the tank will

account for about 15 psi so the pressure in the tank must be about 45 psig to

allow use of the 2500F water.

6.2 SUPPLY LINES

There will be about 100 feet of supply lines to the collector from the

tank. A 1-inch i.d. water pipe would seem adequate for the purpose, but

pressure drops (Fig. 38) in the supply lines alone would require a 1.2 hp

pump (at 30% efficiency) which is obviously too high. A 2-inch pipe was

chosen because it was easily obtainable, cheap, and required only about

0.075 hp to maintain flow through the supply lines.

6.3 COLLECTOR ROOF MANIFOLDS

For ease of installation and to reduce insulation problems it was decided

to use 2-inch i.d. pipe for the manifolds at the top and bottom of the roof with
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Fig. 38 - Pressure Drop in Supply Lines for Various Pipe
Diameters
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the supply line entering the middle. The use of this small diameter pipe

will cause significant flow rate variation in the panels unless valves are

installed on each column of panels to balance the flow. This procedure for

balancing the flow causes about a 10% increase in the total pressure drop

(not to mention the cost of the valves) and would not be desirable in a com-

mercial application. However, in the MSFC prototype system, such valves

were installed since this system is not intended to be an optimized system.

6.4 MAIN PUMP REQUIREMENT

The main collector pump requirements for the system are shown in

the sketch below. Only pressure drops through 100 feet of lines and through

the panels were treated. A perfect siphon effect was assumed for the return

lines. Water properties were evaluated at 2000F.

- .15

10 -

Note: For a startup time period
04of 5 minutes, a P startup- .10

startupR
of 30 feet at 5 gal/min will

C be required.

o .05

S.02

0 I t I t .00
10 20 30 40 50

Flow Rate (gal/min)
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Pumps available on the market are in general designed for much higher

pressures than needed at the 30 gal/min flow rate. This will cause the system

to either stabilize at a much higher flow rate or require a valve to artificially

reduce the pressure. Both of these fixes would cause unnecessary waste of

electrical energy in commercial use, but for the test house a certain amount

of excess power in the pump is desirable so that some flow rate variation can be

performed, time permitting. The ideal pump requirements are about 0.05 hp

but, using 30% efficiency for the pump, the power requirement would be 1/6 hp

or about half that available in the pump that will be used. Thermal insulation

of the pump requires a wide coupled pump to prevent the motor from getting

too hot.
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Section 7

A NEW APPROACH TO COMPARING THE ECONOMICS
OF SOLAR-POWERED VERSUS CONVENTIONAL

HEATING AND COOLING

There are many ways of comparing the economics of solar-powered

versus conventional heating and cooling. One method (suggested by Peter

McCrary of AVCO in Everett, Massachusetts, in telephone conversations

during July 1973) presents a positive case for solar energy in a very tangible

way for the average person. This method involves comparing a total monthly

payment for the solar-powered system to that for a conventional system where

this monthly payment includes the regular home loan payment, the monthly

taxes and insurance on the home, and the monthly payment for water heating,

space heating and air conditioning. A realistic example of this method is

presented in the following paragraphs.

Lockheed-Huntsville's studies have indicated that a typical 2000 ft 2 home

in the Huntsville area can be equipped with an 800 ft 2 solar collector (with

double glazing and selective coating) and a 1000 gallon storage tank (like those

widely used for propane storage) to provide 80% of the residence's requirements

for space heating, water heating and air conditioning with solar energy, while

the remaining 20% is met with auxiliary conventional energy. While this system

is not necessarily the optimum, a comparison of this solar-powered system with

a conventional system leads to interesting results. Table 2 presents some

reasonable cost estimates for the two systems. The basic house cost is $30,000

in both cases. The conventional heating and cooling equipment is estimated to

cost $1500; this includes space heating equipment, air conditioning equipment,
and a hot water heater. The solar heating and cooling equipment is estimated

to cost $5000, under mass production conditions. This figure was obtained

from the following reasoning.
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Table 2

COST COMPARISON FOR CONVENTIONAL VERSUS
SOLAR-POWERED HEATING AND COOLING

Conside ration Conventional Solar-Powered
(dollars) (dollars)

Basic House 30,000 30,000

Heating/Cooling System 1,500 5,000

Total Investment 31,500 35,000

Monthly Loan Payment 244:: 271

Monthly Tax and Insurance 43 :  48"*

Monthly Heating/Cooling 30 6

Total Monthly Payment at the Beginning 317 325
of Repayment Period

At 8.5% interest over 30 year repayment period.

At Huntsville rates.

Estimated for current utility rates in Huntsville.

Rough estimate of solar-powered system cost under future mass-production conditions.
Prototype systems will cost orders of magnitude more.

(.
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* Solar Collector: If this component is integrated into the roof,
its net cost over and above that for a conventional roof could
be about $2.50 per square foot if mass production techniques
are used in its manufacture. Materials would require about
$1.50 per square foot, including 50 cents for two transparent
covers, 70 cents for the Roll-Bond plate, 20 cents for insula-
tion, and 10 cents for the selective coating. The other $1.00
would cover costs for distribution, on-site fabrication, and
profits. Thus, for 800 ft 2 , a cost of $2000 seems reasonable.

* Storage Tank: Current 1000 gallon propane vessels cost
about $500. Thus, for an insulated, installed tank, a cost
of $800 seems reasonable.

* Heating and Cooling Output Units: These include the heat
exchangers for water heating and space heating, the absorp-
tion cycle air conditioner, and their associated pumps and
controls. Estimated price: $1500.

* Auxiliary Furnace: $300.

* Assorted Pumps, Plumbing and Controls: $400.

The total capital investment for the conventional home is thus $31,500, while

for the solar home it is $35,000. With an 8.5%, 30-year homeowner's loan,

the monthly loan payments would be $244 and $271, as shown in Table 2. At

Huntsville rates, taxes and insurance on a monthly basis would be $43 and

$48 for the two homes. The total cost for conventional space heating, water

heating, and air conditioning is estimated to be $30 per month at current utility

rates when averaged over the whole year. For the solar-powered system, 80%

of these requirements will be met with solar energy and only $6 per month will

be required for auxiliary energy. Now, as shown in Table 2, the total monthly

payments for the conventional and solar-powered homes are $317 and $325,
respectively, when the heating and cooling costs are included with the loan

payment, taxes and insurance. Thus, the conventional system costs the home-

owner $8 less per month at current utility rates. However, these rates have
been skyrocketing in recent years and all indications are that this trend will

continue in the future. Therefore, consider Fig. 39. This figure shows a com-

parison of the systems in future years, reflecting the increases in the cost of

energy which are anticipated. In recent years in the Tennessee Valley Authority

region, rates have been increasing at about 10% per year. Therefore, a yearly
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rate increase of 10% for the cost of energy is assumed for Fig. 39. The con-

clusion to be reached from the curves of Fig. 39 can be stated simply. Initially,

the solar-powered system will not cost much more per month to own and operate

than a conventional system; and, over the lifetime of each system, great savings

will be experienced by the owner of the solar-powered system.

Maintenance and repair costs are excluded from the costs of both systems

in Fig.39. This should not affect the comparison very much, since such costs

should be similar and offsetting. The conventional system will require compressor

replacement every few years, while the solar system has no compressor. How-

ever, some occasional collector repairs might be required for the solar system.

Figure 40 presents one last cost comparison for the two systems. The

costs presented here are the integrated costs over the years for the two'systems.

The long-term, life-cycle cost savings for the solar system are great. One

further point (again suggested by Peter McCrary) is that this money saved by

the solar system could be invested to draw interest, thereby multiplying the

long-term, life-cycle cost savings.

In summary, a properly designed, mass-produced solar-powered residential

heating and cooling system could be close to competitive with conventional sys-

tems at today's utility rates, and the projected savings in both monthly pay-

ment and total life-cycle cost will be large for the solar-powered system.
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Section 8

A BRIEF REVIEW OF ALTERNATIVE SOLAR
COOLING CONCEPTS

Although only absorption cycle cooling has been considered in the cur-

rent study, other investigators are currently involved in the development of

numerous solar-cooling concepts. A brief review of these concepts was con-

ducted during this study, based primarily upon the information presented at

the NSF Solar Cooling Workshop held in Los Angeles from 6 February to 8

February 1974.

Current and proposed cooling systems can be lumped into five basic

categories:

* Absorption cycle systems (Refs. 2 through 6)

* Rankine cycle systems (Refs. 7 through 11)

* Desiccant systems (Refs. 12 through 14)

* Vuilleumier (VM) cycle systems (Ref. 15), and

* Night sky radiation/evaporative cooling systems (Ref. 16).

In the absorption cycle area, several efforts are underway to utilize

Arkla Industries' three-ton lithium bromide/water system in solar-powered

installations. These efforts include the MSFC effort, of course, and also the

following two efforts:

* Colorado State University's Solar-Heated and
Cooled Laboratory (Dr. George L6f)

* Honeywell Corporation's Solar-Powered Mobile
Research Laboratory (Dr. Roger Schmidt).

Another absorption cycle system is being fabricated at the University

of Florida (Dr. Erich Farber) which will utilize ammonia and water as the
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fluidl combination. Several analytical programs are underway at laboratories

and universities around the country.

In the Rankine cycle area, Barber-Nichols Company is fabricating a two-

fluid Rankine cycle/vapor compression cycle air conditioner which will also

be put in Honeywell's Mobile Research Laboratory. Several other studies of

Rankine cycle systems are underway at United Aircraft Corporation, Thermo-

electron Corporation, and other facilities.

In the desiccant system area, the MEC cycle developed at the Institute

of Gas Technology (William Rush) is being evaluated analytically and empirically.

Other desiccant systems are being studied at MIT and elsewhere.

RCA has proposed the use of the heat-driven, Stirling-type VM cycle.

This cycle has received much attention in the cryogenic cooler area and appears

promising for solar applications after further development.

Sky Therm (Harold Hay) has demonstrated natural cooling (although not

actually solar in nature) by nocturnal radiation and evaporative cooling using

roof ponds. He also advocates the use of high heat capacity building materials

to dampen ambient temperature variations. However, the sky radiation/

evaporative cooling system holds very little promise in areas outside the

Southwest, since clear night skies and dry night air are essential for the

process.

After reviewing these different solar cooling systems, the absorption

system still appears superior to the others in terms of state of development,

coefficient of performance, running power requirement, safety, dependability

and universal usability for the present state of the art of flat plate solar col-

lectors. However, if collectors are developed which are capable of high

efficiency operation at high temperatures (3000F and above), some of the other

systems will become superior to the absorption cycle for space cooling.
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Section 9

MISCELLANEOUS SMALL STUDIES

During the past 15 months, several small rush item tasks have been

addressed by Lockheed-Huntsville to aid MSFC in the development of the

solar-powered demonstration facility. Although most of these tasks required

only minor manpower expenditures and were reported informally over the

phone or at weekly meetings, a few were considered worthy of documentation

and are presented in the following paragraphs.

9.1 EFFECT OF BLOWER SPEED ON HEATING COIL PERFORMANCE

A study was conducted to determine the thermal effects of blower speed

on heating coil performance. An overall heat transfer coefficient (UA) of

2000 Btu/hr-oF was assumed for the coil unit, and an inlet air temperature

of 70 0 F was also assumed. The results are shown in Fig. 41. Note that sub-

stantial increases in heat transfer are possible with higher air flows, and that

lower outlet air temperatures are achieved with the higher air flow also. Thus,

higher blower speeds are desirable from a thermal viewpoint. However, more

electrical power is required for higher blower speeds.

9.2 TRANSIENT THERMAL ANALYSIS OF WATER LINES

NASA-MSFC designers were concerned about overnight freezing of water

in the transfer lines which would be exposed to the ambient environment. A

simple calculation was made to determine the time required for water remaining

in insulated pipes exposed to an ambient temperature of 0 F to cool down from

1000F to 32 0 F. The model consisted of a cylinder of water with a diameter of

1 inch surrounded by 3 inches of insulation. Figure 42 shows the problem

geometry and results. The time required to reach freezing temperature is

about 34 hours. Since the average ambient temperature in Huntsville during

a 34-hour period is much higher than 0 0 F, no problems from freezing insulated

water lines are anticipated.
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Section 10

CONCLUSIONS

The following conclusions are drawn, based upon the results of contractual

studies of the past three years.

* The utilization of solar energy for space heating, air condi-

tioning, and hot water heating is technically feasible with

properly applied current technology. Although most of the

contractual studies have been centered upon a system located

in Huntsville, Alabama, other Lockheed studies indicate the

same technical feasibility for most other areas of the country.

* Solar-powered space heating, air conditioning, and hot water

heating systems will be economically competitive with con-

ventional systems when they become mass-produced, com-
mercially available commodities. The additional capital
investment required for a solar-powered system will be
more than offset by the large reduction in operating cost.

As energy costs continue to skyrocket, the economic
attractiveness of solar-powered systems will increase

exponentially.

* Widespread adoption of the solar-powered system will result

in a number of beneficial impacts, including:

1. Future energy shortages will be partially alleviated.

2. Since sunshine is pollution-free, a significant reduc-
tion in the pollution byproducts of conventional energy

usage and production will be achieved.

3. By partially displacing the need for fossil fuels,
natural resources will be preserved.

4. Environmental protection will be favorably impacted
by reducing the need for strip mining, offshore oil
drilling, nuclear waste storage, etc.

5. When the full life-cycle costs are evaluated, the a
citizen-owner of the solar-powered system will
reap significant economic rewards, since solar
energy is free.
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6. The nation's quest for energy independence will
be well served, since no foreign nation controls
the flow of sunshine to the United States.

* At the present time, the best solar heating and cooling system
design should include:

1. A double-glazed solar energy collector with an
integral tube-in-sheet absorber plate coated with
a selective black surface (with high a s and low Eir)

2. A sensible heat storage system with water as the
storage medium (The same water should be used
as the energy transport fluid to and from the col-
lector and output units. )

3. An absorption cycle cooling system, and

4. An auxiliary heat source that utilizes storable fuel
(fuel oil, propane, etc.) rather than natural gas or
electricity. This will prevent peak, simultaneous
drains on the conventional utilities by solar-powered
installations, whenever several days of cloudy
weather occur.

* The use of computerized simulations of solar system performance
is essential to compare different system designs, to properly size
collector and storage, and to generate near-optimum designs.
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Section 11

RECOMMENDATIONS

Based upon the results of all efforts to date, the following recommendations

are made.

* Research and development activities to achieve more efficient
and less costly solar system components should be actively
pursued. Better collectors, cooling units, and energy storage
units should be developed to expedite solar energy utilization by
improving system economy.

* Generalized total system simulation computer programs should
be developed to allow analytical studies of solar-powered sys-
tems for various buildings in various regions of the nation.
Lockheed-Huntsville is considering the extension of the computer
program discussed in Section 5 to provide one such generalized
program.

* Detailed analytical studies of solar heating and cooling systems
for numerous types of buildings in numerous locations around
the country should be conducted. Studies such as the one docu-
mented in this report provide the data required for prototype
design and economic evaluation.

* More projects to demonstrate solar heating and cooling for
different building types in different geographical locations
should be initiated. These projects should be well instru-
mented to allow precise determination of performance char-
acteristics for technical and economic evaluation.

* As more experience is gained in the solar heating and cooling
field and as prediction techniques are refined, the arduous
task of preparing design manuals, handbooks, and related
materials required by architects, building engineers, and
contractors should be initiated. Widespread utilization of
solar energy for heating and cooling will never become a
reality until the design and construction of such systems
can be done in a standardized "cookbook" fashion.
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Appendix

SOLAR COLLECTOR MODEL

The solar collector model treats all of the following energy exchanges,

as shown in Fig.43:

" Solar radiation energy exchanges, including transmission,
absorption, and reflection of this short wavelength radiation.
Also, the sun-earth astronomy is included to determine the
time-dependent incidence angle of direct solar radiation for
any collector orientation. Diffuse solar radiation is also
treated by the model.

* Infrared radiation energy exchanges, including emission, ab-
sorption, reflection, and transmission (through non-opaque
transparent covers like Tedlar) of this long wavelength radiation.

* Natural convection between parallel surfaces inside the collector.

* Forced and-or natural convection between the outer transparent
cover and the ambient atmosphere.

* Conduction losses through the backside insulation.

The model solves the transient energy transfer problem numerically to

yield the temperature of the collector components and the energy transfer rates

between collector components as functions of time, as shown in Fig. 44. Some

of the design variables which can be handled with the model include the following:

1. Latitude 12. Transparent cover infrared
2. Solar constant variation emittance
3. Day of year 13. Transparent cover infrared
4. Ambient temperature variation transmittance
5. Average collector temperature 14. Transparent cover thickness
6. Number of transparent covers 15. Collector tilt angle from horizontal
7. Ratio of diffuse to total radiation 16. Absorber plate infrared emittance
8. Wind speed variation 17. Absorber plate solar absorptance
9. Pertinent collector dimension 18. Absorber plate thickness

10. Transparent cover index of 19. Absorber plate material
refraction 20. Spacing between absorber plate

11. Transparent cover extinction and bottom transparent cover
coefficient 21. Spacing between transparent covers

22. Insulation thermal conductivity
23. Fluid flow heat transfer.
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Thus, the collector model allows a great deal of flexibility in collector

design and represents a more accurate model than the steady-state solution

used by other investigators in simulation studies.

infrared

Sforced convection
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Fig.43 - Energy Exchange Mechanisms in Flat-Plate Solar Collector
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